Skype

На какой материнке можно разогнать i5 6400. Материнские платы для intel core i5 — Лучшие варианты для выбора

На какой материнке можно разогнать i5 6400. Материнские платы для intel core i5 — Лучшие варианты для выбора

Материнские платы для intel core i5 необходимы для настройки максимально эффективной работы аппаратных компонентов.

Хорошая материнская плата обеспечит хорошую производительность и стабильное выполнение всех заданий.

Совет! В процессе выбора материнской платы обратите особое внимание на такой параметр, как частота шины – пропускная способность материнки. Чем эта способность выше, тем быстрее будет работать аппаратная и программная система ПК. Помните, что частота шины, которая находится на процессоре должна быть идентичной частоте той шины, которая находится непосредственно на материнской плате устройства.

Пятое поколение процессоров от компании Интел имеет среднюю ценовую категорию и производительность.

Все процессоры данной категории оснащены встроенным контроллером памяти.

Также существует возможность быстрого разгона процессора в процессе мощной нагрузки на ЦП. В большинстве таких ЦП уже встроен .

Ниже, на основании информации известных прайс-агрегаторов мы рассмотрим самые , которые работают с процессорами пятого поколения от компании Интел.

Asus B85M-G

Эта материнская плата – новое творение компании Асус. Она обладает усовершенствованными функциями управления производительностью всех аппаратных компонентов компьютера.

Преимущества и возможности платы Asus B85M-G:

  • Отлично защищает систему от перегрузок во время работы. Все компоненты стойкие к образованию ржавчины. Таким образом, срок эксплуатации материнки увеличивается в несколько раз.
  • Система питания полностью цифровая – это означает, что в ходе использования, материнка сама сможет выявить потенциальные угрозы и предотвратить их. Плата может разогнать центральный процессор, чтобы сделать компьютер более быстродейственным .
  • Система заземления компонентов. Благодаря этому, пользователь никогда не столкнется с проблемой разрядов статического электричества, которые могут привести к поломке платы.
  • На плате расположены твердотельные конденсаторы. Их особенность заключается в том, что каждый из них способен проработать около 5000 часов.
    Согласно тестированию производителя, каждый конденсатор выдерживает интенсивные нагрузки и работу даже при 100 градусах Цельсия.
  • БИОС материнки оснащен интуитивно понятным для пользователя меню и комфортной системой навигации между элементами.
  • Технология Fan Xpert 2 - позволяет устанавливать сразу несколько вентиляторов и управлять их скоростью с помощью встроенного программного обеспечения в режиме операционной системы.
  • Может контролировать и управлять сетевым трафиком и настраивать его приоритетность для пользователя . Поддержка всем известной технологии USB 3.0 обеспечивает быструю передачу данных.
  • Программное обеспечение AI Suite 3 - предназначено для управления всеми компонентами материнской платы. В приложении можно настроить разгон процессора, управлять вентиляторами, регулировать приоритет трафика и менять напряжения подключенных элементов.
    Чтоб получить доступ к программе управления материнкой, необходимо иметь права администратора устройства.
  • Поддерживает работу с форматом видеороликов Ultra-HD 4K. Данная плата – одна из немногих на современном рынке, которая имеет такую возможность.
  • Имеет минимальное негативное влияние на окружающую среду.

Средняя цена: 6100 рублей.

Asus H81M

Данная материнская плата способна разогнать графику графического процессора. Таким образом можно получить более качественное изображение в играх и программах для монтажа видеороликов.

Внешний вид платы модели Asus H81M

Преимущества данной платы:

  • Возможность разогнать центральный процессор. Это позволит ускорить общую работоспособность системы. Asus H81M обладает обновленной версией БИОСа с более упрощенным дизайном.
    Теперь пользователь сможет быстрее произвести настройку всех необходимых функций аппаратного программного обеспечения.
  • Поддерживает протокол UASP, который в совместной работе с технологией USB 3.0 позволяет получить высокую скорость передачи данных по системным шинам компьютера.
  • Защелка под названием Q-Slot. Ее особенность состоит в том, что она позволяет прочнее закреплять видеокарту. В то же время пользователь может без труда вмонтировать и открепить карту.
  • Контроллер EPU. Необходим для управления системой питания всей материнки. В комплектации с устройством идет программное обеспечение под названием AI Suite 3, с помощью него и происходит контроль питания.
  • Упрощенная процедура настройки загрузчика операционной системы. В БИОСе пользователь может выставить упрощенные настройки загрузки ОС, таким образом, система будет включаться вдвое быстрее.
  • Дополнительная функция iControl - Задает приоритетность использования того или иного вида сетевого трафика. Управлять функционалом можно с помощью программы в операционной системе.

Средняя цена: 3500 рублей.

Asus M5A78L-M/USB3

Устройство имеет доступную стоимость и хорошую производительность одновременно.

В базовой комплектации присутствуют диски для установки дополнительного ПО, несколько кабелей SATA, а также заглушки для панели интерфейса.

  • Встроенное видео ATI Radeon HD 3000;
  • Имеет особую функцию Asus Turbo Key – благодаря которой можно «разогнать» систему, нажав лишь на одну кнопку;
  • Присутствует современная технология Технология EPU, позволяющая уменьшить потребление электроэнергии;
  • Поддерживает модули оперативной памяти DDR3 общим объемом до 16 Гб;
  • Поддержка интерфейса USB 3.0.

Средняя стоимость - 4200 российских рублей.

MSI Z170A GAMING M5

Данная плата относится к категории материнских плат для геймерских компьютеров . Также устройство оснащено улучшенной звуковой системой.

На сегодняшний день MSI Z170A GAMING M5 – это наиболее качественная плата компании производителя.

Преимущества и возможности платы MSI 970 :

  • Технология Boost 2 - позволяет проигрывать звук на частотах, которые не несут искажений. Звук получается очень чистым. Звуковая карта полностью изолирована от остальных подключенных устройств.
    Этот прием также способствует более качественному звучанию всех звуковых файлов. Отделенная звуковая карта помечена красной светящейся линией.
  • В процессе игры звук распространяется с так называемым эффектом окружения. Это создает ощущение персонального присутствия в игре. Такое возможно благодаря технологии Blaster Cinema 2.
  • Защищает подключенные устройства от помех, вызываемых электромагнитным излучением. Дополнительный усилитель для наушников проигрывает аудио еще лучше, чем в предыдущих версиях этом материнской платы.
  • Наличие контроллера Atheros Killer . Он позволяет автоматически определять весь сетевой трафик, относящийся к играм. Затем автоматически происходит быстрое взаимодействие аппаратных компонентов компьютера с контентом игры.
  • Возможность определения потокового трафика. После его определения можно настроить уровни приоритета. Это позволит обмениваться сообщениями в чате с другими игроками намного быстрее и с минимальной задержкой.
  • Задняя сторона платы полностью изготовлена из алюминия . Вентиляторы способны быстрее охлаждать данный материал. Алюминий не поддается коррозии, сохраняя работоспособность материнской платы продолжительное время.
  • Специальные заглушки - защищают подключенные устройства от попадания пыли и шерсти домашних животных.
  • Пользователь может обновлять БИОС в режиме операционной системы.

Средняя цена: 13900 рублей.

MSI H81M-E33

Плата имеет хорошую пропускную способность (32 ГБ/с). Поддерживаемая технология ClickBIOS позволяет управлять БИОС еще проще.

Присутствует поддержка ускоренной загрузки ОС и сразу нескольких жестких дисков, емкость которых составляет 3 ТБ.

Плата отлично сочетается с процессорами intel core i5 6500 и intel core i5 4440.

Для разгона процессора не нужно использовать стороннее программное обеспечение.

Необходимо только зайти в БИОС системы и найти там пункт Genie и нажать на него – это протокол, позволяющий управлять производительностью ЦП и графического процессора.

Система автоматически регулирует работу процессора во время разгона, чтобы избежать поломки.

Плата оснащена качественными твердотельными конденсаторами, которые прежде всего влияют на стабильность работы аппаратных компонентов, ведь могут работать с высокими температурами.

Особенности материнской платы:

  • Защита подключенных компонентов от влажности и резких перепадов температуры;
  • Поддержка USB 3.0 позволяет увеличить передачу данных до отметки в 5 ГБ/с, что позволяет передавать большие файлы и фильмы Blu-ray всего за несколько минут;
  • Системные параметры (к примеру, интенсивность работы вентиляторов) настраиваются с помощью командного центра;
  • Как выбрать материнскую плату

    Какую материнскую плату выбрать для офисного, домашнего и игрового компьютера

    Обзор материнской платы MSI Z170A Gaming M7 ✔ Обзор нового чипсета Z170

    Материнские платы для intel core i5 - Лучшие варианты для выбора

Здравствуйте админ! Читал, что недорогой четырёхъядерный процессор от Intel - Core i5-6400 (2.70 ГГц) на архитектуре Skylake имеет заблокированный множитель, но несмотря на это его можно разогнать до частоты 4.3 ГГц и работать он будет на уровне процессора i7-6700K (4.0 ГГц), который в два раза его дороже (18 тысяч рублей)! Каким образом разгоняется i5-6400 , если у него заблокирован множитель?

Разгон процессора по шине на примере i5 6400 и материнской платы Asrock Z170 Pro 4s

Итак, для начала давайте разберемся, что же такое разгон (оверклокинг), тактовая частота и производительность процессора. Разгон - это принудительное повышение характеристик оборудования для увеличения его эффективности. Мощность ЦП напрямую связана с его тактовой частотой, которая высчитывается путем умножения частоты тактового генератора BCLK (шина) на множитель (коэффицент).

Вы, наверное, замечали, что камни (сленг. – процессор) у Intel делятся на два типа, одни с индексом K на конце (i5-6600K, i5-2500K, i7-5820K и т.д.), другие без него (i7-2600, i5-7600, i5-4590). Так вот у первых множитель разблокирован и может быть легко изменен. И если вспомнить формулу, приведенную мной ранее (частота шины Х коэффициент = частота процессора), становится понятно, что если его увеличить конечная производительность вырастет. У второй категории процессоров этот множитель заблокирован производителем и сами по себе они оверклок не подразумевают. Но благодаря некоторым энтузиастам в этой сфере увеличение КПД все же возможно путем увеличения тактовой частоты шины. Хочется сразу отметить, что после разгона процессора по шине, гарантия на него спадает.

Многие спрашивают: Для чего вообще нужен оверклок?

Ответ очень прост. Разгоняя сердце компьютера, его характеристики на выходе будут значительно выше, чем в стоковом варианте. К примеру, наш i5 6400, о котором дальше пойдет речь, в конечном итоге будет работать как i5 6700 без разгона, не плохо ведь, правда? Логичный вывод из этого всего этого это банальная экономия денег. Зачем платить больше, если можно заплатить меньше и разогнать?

Второй постоянный вопрос: Зачем гнать по шине, если гарантия перестает действовать? Можно ведь купить К-процессор и разогнать по множителю?

Здесь ответ тот же самый. Экономическая целесообразность. Все дело в том, что К-процессоры стоят ощутимо дороже своих собратьев без индекса. Да и про разгон в сервисных центрах никто не узнает, если сбросить настройки БИОСа. Это всего лишь попытка разработчиков запугать нас и заставить платить больше, но мы-то с вами знаем толк, верно?

Еще один немаловажный момент, о котором стоит упомянуть, это то, что у разогнанных камней отключается встроенное видео ядро. Но если используется дискретная видеокарта, то я думаю, потеря не велика. Да и зачем нужно гнать процессор без хорошей видюхи?

Теперь, когда мы разобрались с теорией, можно приступать к практике.

Для разгона по шине нам потребуется:

Сам процессор без индекса K (возьмём Intel Core i5-6400 Processor на архитектуре Skylake).

Материнская плата нужна исключительно на 170 чипсете (Asrock Z170 Pro 4s)

Специальная версия BIOS которую можно скачать на сайте производителя.

Затем в БИОСе, на вкладке OC Tweaker/CPU Configuration, увеличиваем значение BCLK. Сильно нагружать компьютерное сердце я не стал и остановился на отметке в 159, что равняется 4.3 МГц (тактовая частота процессора).

Из-за того, что мы разогнали процессор по шине, а не по множителю у нас увеличилась и частота оперативной памяти.

Для того, чтобы камень работал стабильно и не сбрасывал новые частоты на базовые, поднимаем ему напряжение до 1.3V (было 1V ) во вкладке Voltage Configuration. Не бойтесь, интеловские скайлейки спокойно берут отметку в 1.4V при хорошем охлаждении, главное не переусердствуйте.

Те пользователи, знакомство которых с миром персональных компьютеров началось ещё в прошлом веке, наверняка помнят легендарные процессоры Celeron 300A. Ведь оверклокинг как массовое явление начинался именно с них. И тому были веские причины: они без особого труда разгонялись по частоте как минимум в полтора раза, и в результате такой процессор со стоимостью около $150 достигал по производительности уровня старшего 700-долларового Pentium II 450. Именно это и заложило идеологическую базу оверклокинга: «Плати меньше - получай больше».

Однако золотые дни разгона процессоров, подпитываемого желанием сэкономить, остались далеко в прошлом. Теперь разгон стал хобби для богатых, и те пользователи, которые хотят приобщиться к армии оверклокеров, вынуждены, наоборот, платить больше: на все оверклокерские процессоры накладывается дополнительная наценка. Последним же относительно недорогим процессором, который можно было разгонять до уровня старших представителей в линейке, стал выпущенный в 2009 году Core i5-750 поколения Lynnfield. Его при определённом везении вполне можно было раскочегарить до производительности, выдаваемой процессорами класса Core i7. И кстати, выпускаемые в то же время процессоры Core i3 поколения Clarkdale тоже вполне допускали разгон.

Но в 2011 году выход платформы LGA1155 и очередного поколения процессоров Core положил конец всему этому богатству возможностей, доступному даже в бюджетных платформах. Обычные процессоры поколения Sandy Bridge разгоняться перестали совсем, а оверклокерам на выбор были предложены лишь две модели: Core i5-2500K и Core i7-2600K, которые Intel решила продавать несколько дороже обычных и аналогичных по характеристикам собратьев. В результате входной билет в оверклокерский клуб стал стоить $216 - именно в такую сумму был оценён разгоняемый Core i5. Впрочем, энтузиастов это не сломило, и продажи таких дорогих процессоров оказались весьма приличными. Ведь заплатить явно было за что. Рабочую частоту Core i5-2500K и Core i7-2600K можно было поднять до уровня в 4,8-5,0 ГГц, при том что их номинальные частоты составляли 3,3-3,4 ГГц. Поэтому, немного повозмущавшись для приличия, пользователи всё же приняли новую оверклокерскую парадигму, даже несмотря на то, что ни одна из моделей CPU дешевле $200 больше не могла быть разогнана.

Однако в последнее время отношение Intel к разгону стало снова меняться. На волне падения интереса к традиционным ПК именно энтузиасты оказались наиболее преданными покупателями продукции микропроцессорного гиганта. Видимо, это растопило лёд в сердце Intel, и оверклокерам стали оказывать разнообразные знаки внимания. Одним из самых явных таких знаков стало появление Pentium G3258 Anniversary Edition - бюджетного 72-долларового процессора, предназначенного именно для разгона. Но хотя этот процессор стал весьма популярной игрушкой в руках экономных оверклокеров, полноценным оверклокерским предложением его назвать тяжело. Предложения серии Pentium имеют всего два ядра и не поддерживают технологию Hyper-Threading, что нельзя компенсировать никаким увеличением тактовой частоты. Поэтому для серьёзных систем Pentium G3258 попросту не годится.

С выходом новейших процессоров Skylake многие энтузиасты связывали надежды на ещё большие послабления в части ограничения разгонных возможностей процессоров Intel. Дело в том, что в числе свойств новой платформы LGA1151 значилась возможность беспрепятственного изменения частоты базового тактового генератора. И это обещало возвращение разгона любых процессоров - начиная с самых младших Pentium, и заканчивая процессорами Core i5 и i7 без литеры K в названии. Однако поначалу реальность оказалась несколько иной: в неоверклокерских процессорах Intel реализовала блокировку смены тактовой частоты - эта функция получила собственное название BCLK Governor.

Но по прошествии нескольких месяцев после анонса Skylake стало понятно, что работает такая блокировка исключительно на программном уровне и её, соответственно, не сложно обойти. В течение последних недель производители материнских плат смогли детально разобраться с функционированием защиты, и сегодня со всей определённостью можно сказать о том, что разгон моделей Skylake, не относящихся к числу оверклокерских, - это реальность. И кстати, судя по отсутствию какого-либо противодействия со стороны Intel, такая победа над BCLK Governor на самом деле не расстраивает производителя процессоров и происходит с его молчаливого согласия (а может быть, даже и с некоторым содействием).

Впрочем, не будем углубляться в конспирологию, у этого материала совсем иная цель. Открывшиеся возможности по разгону любых Skylake непременно должны быть проверены. Поэтому мы решили протестировать, как протекает и каких результатов позволяет достичь разгон наиболее интересных и правильных с точки зрения изначальной оверклокерской парадигмы объектов - младшего четырёхъядерника серии Core i5 и младшего двухъядерного процессора серии Core i3.

Разгон заблокированных Skylake: как это работает

Итак, с точки зрения разгона модельный ряд процессоров Skylake совершенно не отличается по своей структуре от предыдущих поколений. Intel представила множество двухъядерных и четырёхъядерных процессоров Core i3, i5 и i7 шестого поколения, но разгонять разрешено лишь две специальные модели - Core i5-6600K и Core i7-6700K . Эти процессоры стоят чуть дороже аналогичных моделей без буквы K в названии, но зато имеют разблокированные множители, и на платах с набором микросхем Intel Z170 их результирующая частота легко меняется в настройках UEFI BIOS. Остальным же представителям семейства Skylake такая возможность недоступна, и это ограничение — аппаратное.

Однако тактовая частота, на которой работает процессор, на самом деле является произведением двух параметров - множителя и базовой частоты. И в то время как в обычных, не предназначенных для разгона процессорах множитель жёстко блокируется, для разгона всё равно остаётся альтернативный путь - через увеличение базовой частоты (BCLK) выше стандартного значения 100 МГц. Проблема лишь в том, что в последних интеловских платформах для Sandy Bridge, Ivy Bridge и Haswell частота BCLK была жёстко связана не только с частотой процессора, но и с другими частотами в системе, например с частотой работы шин DMI и PCI Express. А эти шины, к сожалению, очень капризны и работают на повышенной частоте крайне неохотно. Увеличение их частоты более чем на 3-5 процентов неминуемо приводит к искажению передаваемых данных. Поэтому на платах под процессоры в LGA1150- и LGA1155-исполнении изменять BCLK совершенно бесполезно - рост базовой частоты выше номинального значения вызывает нестабильность или полную неработоспособность системы в целом.

Но с выходом процессоров Skylake компания Intel решила внести некоторые изменения в привычную схему формирования частот. В новой платформе шина PCI Express и набор системной логики выделены в отдельный домен, частота которого остаётся фиксированной вне зависимости от того, как изменяется BCLK.

На базовую частоту BCLK остались жёстко завязаны лишь внутрипроцессорные компоненты: вычислительные ядра, кеш, интегрированное графическое ядро, контроллер памяти и прочие Uncore-блоки, которые синхронизируются исключительно между собой, а потому относятся к разгону снисходительно. Таким образом, в теории всё выглядит так, как будто к разгону через изменение базовой частоты пригодны абсолютно любые процессоры Skylake.

И оверклокерские Skylake, действительно, превосходно разгоняются не только через повышение множителя, но и путём увеличения частоты BCLK. Но несмотря на это, первые попытки по изменению частоты Skylake, не относящихся к K-серии, никаких плодов не приносили. Дело в том, что в таких процессорах Intel встроила защиту от увеличения базовой частоты - упомянутый нами выше механизм BCLK Governor, который не давал поднимать BCLK свыше 103-104 МГц. К счастью, как мы уже сказали ранее, защита эта имеет не аппаратный характер и может быть обойдена на программном уровне. Для того чтобы научиться преодолевать её, производителям материнских плат пришлось потратить несколько месяцев. Но результат достигнут - на сегодня алгоритм отключения BCLK Governor средствами BIOS материнской платы найден.

Прорыв на данном направлении совершила Supermicro - именно на её плате C7H170-M была продемонстрирована принципиальная возможность работы неоверклокерских процессоров Skylake с сильно повышенной частотой BCLK. А вслед за Supermicro быстро реализовали подобную функциональность и другие фирмы. На сегодняшний день практически все флагманские материнки ASUS, ASRock, Biostar, Gigabyte, EVGA и MSI на базе набора логики Intel Z170 получили специальные версии BIOS, в которых добавлена возможность полноценного управления частотой BCLK для всего модельного ряда Skylake-процессоров. И более того, как утверждают инженеры, подобная же функциональность с некоторыми ограничениями может быть перенесена и на платы с более простыми наборами логики, так что, вполне вероятно, разгон через увеличение базовой частоты в скором времени станет доступен и в совсем недорогих платформах.

Впрочем, не всё так просто. Реализация обхода интеловской защиты требует некоторых ухищрений, в результате которых разогнанные через увеличение BCLK неоверклокерские процессоры приобретают некоторые изъяны:

  • Разогнанный процессор полностью теряет контроль над коэффициентом умножения. Это значит, что при разгоне «по шине» придётся забыть о технологиях Turbo Boost, Intel Enhanced SpeedStep и об энергосберегающих состояниях C-states. CPU всегда будет работать на предельной частоте и при постоянном напряжении питания.
  • Пропадает возможность снятия показаний температур со встроенных в вычислительные ядра термодатчиков. Большинство средств мониторинга попросту не может отображать температуру процессорных ядер.
  • Неработоспособным оказывается встроенное графическое ядро. Выражается это в том, что драйвер Intel HD Graphics при попытке запуска на разогнанном процессоре тут же завершает свою работу с ошибкой.
  • Существенно снижается скорость выполнения AVX/AVX2-инструкций.

В принципе, приведённый список выглядит не слишком устрашающим. Энергосберегающие режимы оверклокеров интересуют слабо, тем более что в простое процессор потребляет не слишком много и без какого-либо снижения частоты и напряжения питания. Контроль за тепловым режимом CPU проводить с помощью датчиков температуры ядер совсем необязательно: например, встроенный датчик температуры упаковки процессора (CPU Package) продолжает исправно возвращать корректные показания и при разгоне через увеличение частоты BCLK. Ну а встроенная графика вообще многими считается в современных CPU не более чем балластом.

Опасение вызывает лишь замедление работы AVX/AVX2-инструкций. Производительность алгоритмов, активно использующих векторные инструкции, может падать многократно. Но на самом деле смириться можно и с этим: игровые приложения, скорость в которых интересует большинство оверклокеров в первую очередь, AVX-команды практически не задействует.

Поскольку оверклокингу через увеличение частоты BCLK теперь можно подвергать абсолютно любые процессоры поколения Skylake, наибольший практический интерес представляет разгон младших моделей в каждом семействе. Именно в этом случае принцип «плати меньше - получай больше» может дать максимальный эффект. Приняв во внимание тот модельный ряд Skylake, который представлен Intel к настоящему моменту, мы сформировали следующий перечень LGA1151-процессоров, наиболее подходящих для разгона:

Процессор Ядра/ потоки L3-кеш Штатный множитель Цена BCLK для 4,6-4,8 ГГц

Core i7-6700

Core i5-6400

Core i3-6300

Core i3-6100

Pentium G4400

Все процессоры из этого списка мы проверять не стали, а выбрали лишь пару самых-самых интересных: Core i5-6400 и Core i3-6100. Именно с ними и проводились все практические эксперименты.

Разгон BCLK: что на практике

В реальности работает всё очень просто. Единственное, что нужно для разгона неоверклокерского Skylake, - это правильная материнская плата, для которой существует адаптированная версия BIOS. На сегодня список подходящих плат уже очень велик, однако нужно иметь в виду, что далеко не все производители выкладывают версии BIOS с поддержкой разгона обычных Skylake-процессоров на свои сайты. Некоторые из них, побаиваясь карающей длани Intel, распространяют необходимые для разгона прошивки по-партизански - через независимые оверклокерские форумы. Поэтому перед тем, как перейти непосредственно к разгону, какое-то время придётся потратить на поиск нужной версии BIOS.

Например, та плата, что используется для тестов процессоров в нашей лаборатории, - ASUS Maximus VIII Ranger , получила уже даже две версии BIOS, подходящие для разгона Skylake с заблокированными множителями. Но искать их нужно не на сайте ASUS, а в специальной теме на оверклокерском портале HWBOT, хотя они и сделаны программистами компании, а не энтузиастами. Стоит отметить, что обе эти версии представляют собой ответвление от основной линии развития BIOS и предназначены исключительно для экспериментов по разгону не-K-процессоров. Более того, файл описания к этим специальным прошивкам содержит предупреждение о том, что для разгона Core i5-6600K или Core i7-6700K они не подходят и могут даже вызвать повреждение таких процессоров.

Интерфейс специальных прошивок совершенно не отличается от привычной среды UEFI BIOS: никаких дополнительных опций он не добавляет и лишь позволяет беспрепятственно менять частоту BCLK. Единственное отличие в процедуре разгона заключается в том, что для нормальной загрузки операционной системы в настройках UEFI BIOS в разделе Advanced\CPU Configuration потребуется установить опцию Boot Performance Mode в значение Turbo Performance , а также отключить CPU C- states и технологию Intel SpeedStep . В остальном же всё работает ровно так же, как и при разгоне разблокированных процессоров.

Правда, нужно сделать ещё одно важное предварительное замечание, касающееся проверки стабильности работы разогнанной системы. Дело в том, что общепринятые утилиты, которыми обычно проверяется стабильность, такие как OCCT, LinX или Prime95, активно используют ресурсоёмкие AVX/AVX2-инструкции, выполнение которых у разогнанных процессоров с заблокированным множителем сильно замедлено. Поэтому для неоверклокерских процессоров эти утилиты создать значительную нагрузку оказываются неспособны, и для проверки температурного режима и устойчивости работы в целом они уже не подходят. Вместо этого пользоваться лучше программами, которые могут «озадачить» ядра процессоров интенсивными целочисленными вычислениями, среди которых можно порекомендовать различные пакеты для финального рендеринга. Впрочем, даже такие программы греют Skylake не слишком сильно, поэтому в конечном итоге предельные температуры разогнанных не-К-процессоров оказываются заметно ниже, чем у их полноценных оверклокерских собратьев. Поэтому для неоверклокерских процессоров можно обойтись даже менее мощными системами охлаждения, чем принято использовать в платформах, где трудятся разогнанные Core i5-6600K или i7-6700K.

Теперь о полученных результатах. Мы не ставили своей целью достижение каких бы то ни было рекордов. Задача проведённого тестирования - выявить тот разгонный потенциал не-К-процессоров семейства Skylake, который можно раскрыть в массовых системах. Поэтому для отвода тепла от тестовых CPU мы пользовались обычным воздушным кулером башенного типа Noctua NH-U14S, а процессорное напряжение не повышали до потенциально опасных величин. Иными словами, такой разгон, о котором пойдёт речь далее, - это вполне приемлемые для постоянной эксплуатации режимы работы.

Первым мы попробовали разогнать четырёхъядерный Core i5-6400. Это - процессор с крайне низким штатным множителем 27x, поэтому при его разгоне частоту BCLK необходимо повышать довольно сильно. Однако никаких проблем с этим нет: при увеличении напряжения питания до 1,425 В и включении опции CPU Load-line Calibration наш экземпляр Core i5-6400 легко покорил отметку 4,7 ГГц.

Стабильность в таком состоянии была подтверждена полным прохождением всего набора тестовых приложений, температура же CPU под нагрузкой не выходила за 80-градусные пределы. Иными словами, разгон удался на славу: тактовая частота процессора была повышена на 75 процентов выше номинала, и по достигнутой частоте Core i5-6400 оказался совсем не хуже, чем чистокровный оверклокерский Core i5-6600K. То есть, на первый взгляд, Core i5-6400 позволяет сэкономить порядка $60 - именно такова разница в цене этих четырёхъядерников.

Но не стоит забывать и про подводные камни. Показания температурных датчиков у разогнанного Core i5-6400 оказались недоступны. Утилиты для мониторинга о температуре процессорных ядер действительно не отображают никаких корректных данных.

Как и было обещано, катастрофически упала и скорость работы алгоритмов, задействующих AVX/AVX2-инструкции. Для примера мы запустили три простых теста FPU из утилиты Aida64, и, как можно убедиться по приведённым снимкам экрана, производительность разогнанного Core i5-6400 оказалась в несколько раз хуже, чем должна была быть.

Чтобы лучше оценить масштаб бедствия, в следующей таблице мы приводим показатели этих бенчмарков для Core i5-6400 в номинальном режиме и при его разгоне до 4,7 ГГц.

Частота растёт, а производительность снижается в несколько раз. Такова расплата за разгон той модели процессора, которая изначально для разгона не предназначена. Остаётся лишь утешать себя тем, что программы, активно работающие с AVX/AVX2-инструкциями, среди привычных для большинства пользователей приложений встречаются не слишком часто.

Второй выбранный нами для тестов процессор, Core i3-6100, - это младший двухъядерник с технологией Hyper-Threading, изначально рассчитанный на работу при частоте 3,7 ГГц. Но с помощью увеличения частоты BCLK разогнать оказалось очень легко и его. Предельная частота, при которой наш экземпляр смог нормально работать, составила те же типичные для Skylake 4,7 ГГц. Функционирование в таком режиме потребовало установки частоты BCLK в 127 МГц, а стабильность была достигнута при увеличении напряжения питания CPU до 1,425 В.

Никаких проблем с устойчивой работой системы при таком разгоне не наблюдалось, процессор же разогревался не более чем до 75 градусов. Таким образом, частоту выбранного нами для тестов экземпляра Core i3-6100 удалось увеличить на 27 процентов. Это - заметно меньше того прироста, который удалось выжать из Core i5-6400, но всё равно неплохо. Тем более до сегодняшнего дня увидеть современный Core i3 в разгоне нам ещё не удавалось ни разу.

К сказанному остаётся добавить лишь две вещи. Во-первых, у не-К-процессоров частота работы Uncore-блоков жёстко связана с частотой вычислительных ядер. Изменение в настройках BIOS множителя, отвечающего за частоту Uncore, на неоверклокерские процессоры никак не влияет - это функция работает лишь для Core i5-6600K и Core i7-6700K. Поэтому при разгоне не-K процессоров через увеличение частоты BCLK одновременно с вычислительными ядрами разгоняется и L3-кеш. К счастью, в этом нет никакой проблемы. Как показали наши эксперименты с Core i5-6400 и i3-6100, Uncore-узлы Skylake вполне нормально функционируют на повышенных частотах вместе с вычислительными ядрами и не создают при разгоне до 4,7 ГГц никаких дополнительных препятствий.

Во-вторых, неприятных сюрпризов не следует ждать и со стороны контроллера памяти. Применяемые нами в тестовой системе модули Corsair Vengeance LPX CMK16GX4M2B3200C16R рассчитаны на режим DDR4-3200, и они смогли нормально работать в нём, в том числе и при увеличенной частоте BCLK, с обоими протестированными CPU. Естественно, рост частоты базового тактового генератора требует попутного увеличения делителей, формирующих частоту памяти, и про это не нужно забывать во время разгона. Но никаких проблем при работе со скоростной DDR4-памятью у разогнанных не-К-процессоров обнаружено не было.

Летом прошлого года лаборатория вернулась к теме серийного : бралось несколько образцов и проводилось исследование их частотного потенциала в одинаковых условиях. Разумеется, статистическая точность не слишком велика, но общее представление о возможностях новых ЦП наши пробы все же позволяли получить.

В рамках экспериментов мы познакомились с возможностями шести моделей процессоров:

  • Исследуем разгонный потенциал AMD Athlon X4 860K: тест десяти экземпляров процессора ;
  • Исследуем разгонный потенциал AMD A6-7400K: тест шести экземпляров процессора ;
  • Исследуем разгонный потенциал Intel Pentium G3258: тест шести экземпляров процессора ;
  • Исследуем разгонный потенциал AMD A4-6300: тест шести экземпляров процессора ;
  • Исследуем разгонный потенциал восьми процессоров AMD A10-7870K ;
  • Исследуем разгонный потенциал AMD FX-8320: тест восьми экземпляров процессора .

Все они бюджетного класса, а сами CPU почти все производства AMD. Но на этот раз мы решили протестировать более высокий ценовой класс, в котором в основном представлена Intel. Однако проблема ее ассортимента заключается в том, что официально под разгон в массовой линейке LGA 1151 предназначены всего два процессора – Intel Core i5-6600K и Intel Core i7-6700K. А потому, учитывая ценники, выбор очевиден – Intel Core i5-6600K. Именно он (а вернее – восемь образцов) и станет объектом нашего внимания.

Нет, мы не открещиваемся от общеизвестного факта: разгон на LGA 1151 возможен и в отношении ЦП с заблокированным коэффициентом умножения; этому даже был посвящен целый материал «Обзор и тестирование процессора Intel Core i3-6100: разгон запретного ». Но к этой теме мы вернемся чуть позже, тем более что с ней до сих пор не все ясно, хотя пока что «мутит воду» в основном ASRock. Причем в совершенно противоположных направлениях, сначала убирая разгон в моделях материнских плат на старшем наборе системной логики Intel Z170, а потом выпуская модели на младших Intel H170 и Intel B150, изначально рассчитанные на разгон:

  • ASRock позволяет разгонять процессоры Skylake с заблокированным множителем при помощи внешнего тактового генератора .

Итак, благодаря нашему постоянному партнеру – компании Регард , перед вами тест частотного потенциала восьми экземпляров Intel Core i5-6600K.

Немного лирики или «как разгонять?»

Процедура разгона процессоров серии «K» до неприличия проста и для этого необходимо лишь обладать материнской платой на базе набора системной логики Intel Z170 (в случае чипсетов Intel B***, H*** и Q*** официально такой возможности нет).

Для разгона пользователю нужно оперировать лишь множителем CPU Core и напряжением CPU Core.

Напряжение и частота процессора на примере BIOS модели ASRock Z170 Extreme6.

При разгоне оперативной памяти нужно обращать внимание еще на три: VCCIO (напряжение интегрированного в CPU контроллера памяти), VCCSA (напряжение контроллеров PCI-E и прочих в CPU, также может влиять на разгон оперативной памяти) и собственно памяти.

Задачу осложняет лишь отсутствие стандарта на названия параметров BIOS, поэтому у разных производителей системных плат они различаются.

Параметр Максимальное неофициально рекомендуемое значение, В ASRock ASUS Biostar EVGA Gigabyte MSI
CPU Core 1.40 CPU Vcore Voltage CPU Core/ Cache Voltage CPU Vcore Voltage Vcore CPU Vcore CPU Core Voltage
CPU VCCIO 1.10 VCCIO Voltage CPU VCCIO Voltage и CPU VCCIO Boot Voltage CPU VccIO Voltage VCCIO CPU VCCIO CPU IO Voltage
CPU VCCSA 1.20 VCCSA Voltage CPU System Agent Voltage и CPU System Agent Boot Voltage CPU SA Voltage VSA CPU System Agent Voltage CPU SA Voltage
DRAM Voltage 1.40-1.45 DRAM Voltage DRAM Voltage DRAM Voltage DIMM Voltage DRAM Voltage (CH A/B) DRAM Voltage

Тестовые образцы

Маркировка новых ЦП практически не претерпела изменений в сравнении с прошлыми поколениями процессоров.

Наиболее важны в ней две строчки – «FPO» и «ATPO»: при объединении (на примере нашего образца – L533B120-00859) они формируют серийный номер. Сама же строка FPO одновременно называется «батчем» («batch code»), и именно по нему ориентируются, отбирая желаемый экземпляр CPU при отсутствии доступа к тестовому стенду.

Кроме того, batch code содержит собственно информацию о том, когда и где был изготовлен данный образец:

  • Первый символ обозначает место производства – 0 = San Jose, Costa Rica; 1 = Cavite, Philippines; 3 = Costa Rica; 6 = Chandler, Arizona; 7 = Philippines; 8 = Leixlip, Ireland; 9 = Penang, Malaysia; L = Malaysia; Q = Malaysia; R = Manila, Philippines; X = Vietnam; Y = Leixlip, Ireland;
  • Второй символ – год производства (в нашем случае – 2015-й);
  • Третий и четвертый символы – неделя производства (в нашем случае – 33-я неделя или же промежуток с 10 по 16 августа);
  • С пятого символа по восьмой – идентификатор партии (в нашем случае – B120).

Ну а ATPO – это собственно порядковый номер процессора в партии.

Все тестируемые образцы относятся к одной партии, лишь серийные номера идут не подряд:

  • L533120-00119;
  • L533120-00242;
  • L533120-00243;
  • L533120-00859;
  • L533120-00912;
  • L533120-01054;
  • L533120-03136;
  • L533120-03592.

Тестовый стенд

Для проверки разгонного потенциала процессоров использовался следующий тестовый стенд:

  • Материнская плата: ASRock Z170 Extreme6 (BIOS L1.82; экземпляр из этого обзора);
  • Процессор: восемь экземпляров Intel Core i5-6600K Skylake-S 3500 МГц;
  • Система охлаждения: Thermalright Silver Arrow SB-E с одним вентилятором Thermalright TY-143;
  • Термоинтерфейс: Arctic Cooling MX-2 (обзор);
  • Оперативная память: DDR4-3000 Kingston HyperX Savage (HX430C15SBK2/16) объемом 2 х 8 Гбайт (16-15-15-36; 1.35 В; комплект из этого обзора);
  • Блок питания: Corsair HX750W 750 Ватт (отдельно не тестировался; незначительно доработан по элементной базе);
  • Системный накопитель: Samsung SM951 256 Гбайт (Samsung UBX + 16 нм MLC ToggleNAND Samsung, BXW2500Q; экземпляр из этого обзора);
  • Корпус: открытый стенд.

Программное обеспечение:

  • Операционная система: Windows 10 x64 Домашняя со всеми текущими обновлениями с Windows Update (версия сборки - 10586.122).

Методика тестирования

К сожалению, отдельного материала по представителям Skylake-S, в котором рассматривались бы их нюансы разгона, мы не выпускали (возможно, это будет реализовано позднее). А потому сейчас просто кратко опишем алгоритм наших тестов.

Для поиска порога нестабильности использовались программы OCCT 4 и Prime 95, а в качестве дополнительного теста – 3DMark . OCCT предлагает наглядный мониторинг напряжений, частот, троттлинга и температур, поэтому на скриншотах присутствует именно это приложение. Но нужно учитывать тот факт, что оно не может определить текущую частоту процессора поколения Skylake, а потому всегда отображает номинальную. Сопутствовать ему на результирующих скриншотах будет CPU-Z версии 1.74.0 x64 и температурный мониторинг программных пакетов AIDA64 и HWMonitor.

Продолжительность теста составляет не менее 30 минут – этого времени достаточно для определения примерного потенциала процессора, усложнение условий вроде «тестировать не менее нескольких часов, прибавить 0.01 В, снизить частоту на 20 МГц» не обеспечит принципиальной разницы, но при этом само тестирование займет куда больше времени.

Самый важный вопрос – величины напряжений. Какое напряжение считать максимально допустимым? Официальных данных на этот счет Intel не предоставляет, в документации компании приводится лишь технический диапазон значений VID. Но это лишь возможный диапазон, а не фактически безопасные значения. И уже давно оные находятся куда ниже, нежели технические границы. Проблема осложняется еще и малыми размерами кристалла, и (самое важное!) применяемым термоинтерфейсом. Качество последнего таково, что о нем пользователи уже слагают легенды. Оба этих фактора предъявляют серьезные требования к системе охлаждения, а безопасным напряжением CPU Core считается значение не больше 1.40 В.

Кроме того, некоторый интерес у пользователей вызывает значение штатного VID. Для его определения необходимо отключить технологии энергосбережения и Turbo Boost. Установившееся в результате этого напряжение на CPU и будет искомым VID. Важность VID заключается в его взаимосвязи с разгонным потенциалом: чем он выше, тем, как правило, до меньших частот разгоняется процессор.

И немного о мониторинге напряжений. На прошлом процессорном разъеме LGA 1150 это было головной болью обозревателей: конструктивно практически не отличающийся от предыдущих поколений, он не требовал подвода четырех питающих напряжений (CPU Core, iGPU, VCCIO и VCCSA), ограничиваясь одним, из которого уже сам ЦП посредством собственного встроенного преобразователя получает необходимые ему напряжения. На LGA 1151 случилось счастье: Intel отказалась от этого, а потому снова стало возможным контролировать напряжения напрямую, не полагаясь лишь на программный мониторинг, порой выдававший порой абсурдные показания.

Разгоном подсистемы памяти мы не стали озадачиваться особым образом, а просто активировали профиль SPD на частоту 2666 МГц с таймингами 9-10-9-21-118-1T. Частота CPU Cache фиксировалась множителем, равным 35. Это рекомендуется проделывать при разгоне процессорных ядер, иначе данная частота может подниматься синхронно с основной частотой процессора. Отметим, что это лишь особенность платформы, а не используемой в составе стенде материнской платы ASRock.

Кстати, о системной плате. Ее роль взяла на себя ASRock Z170 Extreme6, оставшаяся у нас после октябрьского обзора .

У платы есть свои ограничения (вроде особенностей управления таймингами памяти), но в целом она пока удовлетворяет нашим запросам. А «пока» лишь потому, что в последнее время из подсистемы питания процессора периодически стал доноситься свист дросселей, хотя до сих пор никаких серьезных нагрузок разгоном процессоров на нее не создавалось – модель использовалась для тестов оперативной памяти и SSD.

Наиболее оптимальным режимом LoadLine Calibration является Level3 – именно в нем напряжение CPU Core испытывает наименьшие колебания. На примере выставления значения «1.400 В» в настройках BIOS:

  • Level 1 – 1.390 В в простое и 1.437 В в нагрузке;
  • Level 2 – 1.383 и 1.430 В соответственно;
  • Level 3 – 1.389 и 1.405 В соответственно;
  • Level 4 – 1.375 и 1.335 В соответственно.

Энергопотребление процессоров Intel Core i5-6600K на штатном и сниженном напряжении оказалось столь невелико, что для тестов пришлось отказаться от использовавшегося при написании обзоров ЦП AMD амперметра – на небольших токах (меньше 4-5 А) его показания начинают сильно отклоняться от реальных значений (вплоть до того, что на токах около 1 А амперметр показывает на дисплее «0.00»). Все же данный прибор нацелен на работу с большими (до 50 А), а не малыми токами. Поэтому в данном обзоре для замеров использовался мультиметр DT9205A, рассчитанный на токи до 20 А, который подключался напрямую в «разрыв» дополнительного питания ATX.

Точности ради отмечу: на токах свыше 7-8 А показания амперметра были схожи с мультиметром. А некоторым особо любознательным читателям, желающим повторить процедуру самостоятельно, следует взять на заметку тот факт, что далеко не все мультиметры рассчитаны на токи до 20 А (мой второй, более старый, мультиметр Mastech MY64, например, рассчитан только на 10 А). Превышение допустимых токов чревато повреждением устройства.

  • Ryzen 7 3700X в Регарде
  • Обвал цен на i7 9700K
  • Ryzen 3xxx по цене 2ххх Смотри!

В данном материале мы поэтапно рассмотрим методику увеличения производительности младшей 4-хъядерной модели LGA1151 – Corei5-6400.Разгон данного полупроводникового кристалла при помощи изменения множителя частоты центрального процессорного устройства будет невозможен. Однако существует альтернативный метод, который мы и изложим далее.

Corei5-6400: предыстория

Корпорация Intel до определенного момента предоставляла возможность увеличения тактовых частот своих полупроводниковых решений. Это позволяло добиваться существенного прироста быстродействия на практике. Последним поколением таких центральных процессоров стали решения, выполненные на базе LGA 1156. С выходом следующей платформы LGA 1155 можно было осуществлять увеличение тактовой частоты только путем изменения множителя частоты центрального процессора в моделях с индексом «К». Другие полупроводниковые кристаллы данного семейства попросту были лишены данной возможности. При их использовании можно было только на некоторых моделях системных плат увеличить на 2-3 МГц частоту шины и получить за счет этого незначительный прирост быстродействия. Такая ситуация сохранялась на протяжении трех следующих поколений процессоров. Только с выходом LGA1151 наметились определенные изменения в данном направлении. Архитектура центрального процессорного устройства была значительно переработана. В результате частота тактового генератора больше не оказывает напрямую влияние на такие компоненты персонального компьютера, как дискретная видеокарта и шина PCI-Express. В результате без изменения множителя центрального процессорного устройства можно изменить частоту тактового генератора и за счет этого увеличить производительность всей компьютерной системы в целом. Именно таким образом до настоящего времени и осуществляется разгон Corei5-6400.

Corei5-6400: характеристики чипа

Прежде всего, давайте попробуем разобраться с техническими спецификациями процессора Corei5-6400. В перечень параметров данного устройства входят:

— дата выпуска –3-ий квартал 2015 года;

— технологический процесс – 14 нм;

— количество программных потоков обработки данных и кода – 4;

— тактовые частоты – 2,7-3,3 ГГц;

— кэш 3-го уровня – 6 Мб;

— тепловой пакет – 65 Вт;

— интегрированный графический ускоритель -HDGraphics 530 с диапазоном рабочих частот 350-950 МГц;

— количество активных каналов оперативной памяти – 2;

— максимальный объем адресуемой оперативной памяти – 64 Гб;

— максимальная температура – 71 °С.

По обозначению данной модели центрального процессорного устройства можно увидеть, что в маркировке отсутствует индекс «К». Это значит, что разогнать процессор путем простого увеличения множителя, не получится. По этой причине остается только один способ решения данной задачи – это увеличение частоты тактового генератора. За счет этого может быть увеличено быстродействие Corei5-6400. В этом случае разгон действительно оправдан. У процессора изначально существенно занижены частоты. Их увеличение может привести к значительному приросту уровня производительности на фоне остальных моделей с более высокими частотами.

Corei5-6400: особенности разгона

Давайте отметим определенные недостатки, связанные с увеличением уровня быстродействия Corei5-6400. В отличие от случая, когда центральный процессор имеет индекс «К», при разгоне Corei5-6400 может возникнуть целый ряд проблем. К ним можно отнести следующие:

— материнская плата для разгона Corei5-6400должна быть прошита особой версией BIOS. Она формально была разработана производителем данного компьютерного компонента. Все возможные проблемы, которые могут возникнуть при этом, целиком и полностью ложатся на плечи владельца персонального компьютера. Производитель в этом случае не несет никакой ответственности. После разгона кристалла интегрированное графическое решение не может функционировать. В состав таких системных блоков в большинстве случаев входит дискретная видеокарта, и поэтому проблем не возникает. Если в процессе работы используется только встроенное решение, разгон не возможен.

— снижение уровня быстродействия выполнения инструкции AVX&AVX2. Данные инструкции, к счастью, не так часто встречаются в программном коде. Но кода это происходит, производительность вычислительной системы значительно снижается. Она будет даже ниже, чем в штатном режиме функционирования.

— после увеличения уровня быстродействия нет возможности контроля температуры кремниевого кристалла центрального процессорного устройства. Большинство датчиков искажают показания или отключаются. Единственный датчик, который продолжает работать в таком режиме – это термопреобразователь упаковки центрального процессора. В такой ситуации этого будет вполне достаточно. Для разгона нужно отключить технологию Turbo Boost и все энергосберегающие режимы. В режиме увеличения быстродействия их активация может привести к потере стабильности в работе персонального компьютера.

По существу в ранее приведенном списке нет никаких значительных проблем, и большинство оверлокеров не обращает на них внимания.

Corei5-6400: конфигурация системы

Теперь поговорим немного об основных требованиях комплектации персонального компьютера для осуществления разгона. Для этого должна быть особая версия BIOS для материнской платы с опцией разгона. Также необходимо иметь в наличии блок питания с мощностью 700 Вт и более, модули оперативной памяти с частотой работы 3200 МГц, продвинутую систему охлаждения для системного блока и центрального процессорного устройства.

Corei5-6400: подготовка к разгону

Разогнать процессор Corei5-6400 на материнской плате с обычным BIOS не получится. Здесь по умолчанию нет опции, которая позволила бы изменять частоту тактового генератора. Чтобы она появилась, нужно найти специальную прошивку и скачать ее. Найти такую прошивку можно на специальных тематических ресурсах в интернете. Затем необходимо установить ее в базовую систему ввода/вывода, а затем перезагрузить персональный компьютер и проверить наличие данной опции. Только после этого можно предпринять попытку разгона персонального компьютера.

Corei5-6400: методика увеличения производительности

Теперь поговорим непосредственно об алгоритме разгона Corei5-6400. Разгон данного кремниевого решения осуществляется следующим образом. Прежде всего, необходимо скачать специальную прошивку для BIOS, в которой присутствует возможность изменения частоты тактового генератора. Подобные прошивки можно найти на большинстве оверлокерских форумов. После этого устанавливаем ее на свою материнскую плату. Теперь перезагружаем систему и заходим в BIOS. Здесь необходимо отключить опцию Turboboost и все технологии, которые связаны с энергоэффективностью. Также нужно отключить интегрированное графическое решение. Теперь необходимо сохранить выполненные изменения и перезапустить персональный компьютер. Проверьте стабильность работы системного блока при помощи утилиты AIDA 64. Заново выполняем перезагрузку компьютера и заходим в режим BIOS. Здесь необходимо по минимуму снизить частоту работы оперативной памяти, повысить значение частоты тактового генератора с минимальным шагом. Сохраняем данные параметры и перезапускаем системный блок. После этого заново тестируем стабильность работы персонального компьютера при помощи указанного ранее программного обеспечения. Продолжаем выполнять последних два этапа до тех пор, пока система не начнет функционировать стабильно. Если простого повышения частоты для стабильной работы окажется недостаточно, необходимо использовать напряжение на центральном процессорном устройстве. Частота на практике можно достигать 4,5-4,8 ГГц. Напряжение на практике может составлять 1,4-1,425 В. В данном случае все будет зависеть от качества полупроводникового кристалла ЦПУ, лежащего в основе персонального компьютера. Дальнейший разгон при достижении таких значений становится нецелесообразным. Вычислительная система после этого начинает работать нестабильно.

Как проверить работоспособность после увеличения быстродействия?

После увеличения производительности процессора Corei5-6400, необходимо проверить стабильность функционирования вычислительной системы, работающей на основе Corei5-6400. Как было отмечено ранее, разгон может оказать негативное влияние на исполнение инструкций AVX&AVX2 . По этой причине в состав тестового программного обеспечения не должны входить программы на основе таких инструкций. Для проверки стабильности работы вычислительной системы оптимальным выбором является AIDA 64. Данная утилита практически не использует проблемный программный код. Конечно, существуют версии утилиты, в которых не используются такие инструкции.

Увеличение производительности Corei5-6400: результаты

Увеличение производительности может помощь добиться от Corei5-6400 феноменальных результатов. Разгон данного чипа позволяет получить уровень быстродействия, который вполне сопоставим с флагманскими продуктами данного производителя. Разница в цене при этом действительно получается довольно внушительная. В этом плане единственным исключением является программное обеспечение с инструкциями AVX&AVX2. Однако оно встречается не столь часто. Для большинства компьютерных энтузиастов это вряд ли станет сдерживающим фактором. Стоит отметить, что для данного процессорного решения разгон вполне оправдан. Однако важно осознавать, что делается все на свой страх и риск.