Steam

Блочная структура программы. Документация по работе с библиотекой

Блочная структура программы. Документация по работе с библиотекой

Приступая к разработке каждой программы ПС, следует иметь в виду, что она является большой системой, поэтому нужно принимать меры для ее упрощения. Для этого программу разрабатывают по частям, которые называются программными модулями. Такой метод программирования называют модульным программированием.

Модуль - это самостоятельная часть программы, имеющая определенное значение и обеспечивающая заданные функции обработки автономно от других программных модулей. Каждый программный модуль программируется, компилируется и отлаживается отдельно от других модулей программы, и тем самым физически разделен с другими программными модулями. Каждый программный модуль может включаться в состав разных программ, если выполнены условия его использования, описанные в документации по ее использованию. Т.е. хорошо продуманный модуль позволяет избежать дублирования в программировании.

Любое ПС имеет свою структуру, которая разрабатывается для удобства:

  • 1. разработки
  • 2. программирования
  • 3. отладки
  • 4. внесения изменений

Также структуризация ПС позволяет:

  • 1. распределить работы по исполнителям, обеспечив их загрузку и требуемые сроки разработки
  • 2. построить календарные графики проектных работ и осуществлять их координацию в процессе создания ПИ.
  • 3. контролировать трудозатраты и стоимость проектных работ.

При создании ПС выделяются многократно используемые модули, их типизируют и унифицируют, за счет чего сокращаются сроки и трудозатраты на разработку ПС в целом.

Некоторые ПС используют готовые модули из библиотек стандартных процедур, функций, объектов и методов обработки данных.

Типовая структура ПС:

носитель отладка программный модуль

Таблица. Типы модулей

Свойства модуля:

  • 1. один вход и один выход - на входе программный модуль получает определенный набор исходных данных, выполняет обработку данных и возвращает результат
  • 2. функциональная завершенность - модуль выполняет перечень операций для реализации каждой отдельной функции в полном составе.
  • 3. логическая независимость - результат работы модуля зависит только от исходных данных, и не зависит от работы других модулей.
  • 4. слабые информационные связи с другими программными модулями - обмен информации между модулями должен быть по возможности минимизирован.
  • 5. обозримый по размеру и сложности.

Каждый модуль состоит из спецификации и тела модуля.

Спецификация - правила использования модуля.

Тело - способ реализации процесса обработки.

Принцип модульного программирования ПС:

  • 1. Определение состава и подчиненность функций
  • 2. определение набора программных модулей, реализующих эти функции

При составлении алгоритма необходимо учитывать:

1. каждый модуль вызывается на выполнение вышестоящим модулем и закончив работу, возвращает управление вызвавшему модулю.

Методы разработки структуры программы.

В качестве модульной структуры программы принято использовать древовидную структуру, включая деревья со сросшимися ветвями. В узлах дерева размещаются модули, а стрелки показывают подчиненность модулей (т.е. в тексте модуля, из которого она исходит, имеется ссылка на модуль, в который она входит).

Модульная структура программы должна включать и совокупность спецификаций модулей, образующих эту программу. Спецификация программного модуля содержит:

  • 1. синтаксическую спецификацию его входов, позволяющую построить обращение к нему на используемом языке программирования
  • 2. функциональную спецификацию модуля (описание всех функций, выполняемых этим модулем).

Существуют разные методы разработки структуры программы. Обычно используют 2 метода:

  • 1. Метод восходящей разработки
  • 2. метод нисходящей разработки

Метод восходящей разработки.

Сначала строится модульная структура программы в виде дерева. Затем поочередно программируются модули программы, начиная с модулей самого нижнего уровня, в таком порядке, чтобы для каждого программируемого модуля были уже запрограммированы все модули, к которым он может обращаться. После того, как все модули программы запрограммированы, производится их поочередное тестирование и отладка в принципе в таком же (восходящем) порядке, в каком велось их программирование. На первый взгляд такой порядок разработки программы кажется вполне естественным: каждый модуль при программировании выражается через уже запрограммированные непосредственно подчиненные модули, а при тестировании использует уже отлаженные модули. Не рекомендуется, т.к.:

  • 1. для программирования какого-либо модуля совсем не требуется текстов, используемых им модулей - для этого достаточно, чтобы каждый используемый модуль был лишь специфицирован (в объеме, позволяющем построить правильное обращение к нему), а для тестирования его возможно используемые модули заменять их имитаторами (заглушками).
  • 2. каждая программа в какой-то степени подчиняется некоторым внутренним для нее, но глобальным для ее модулей соображениям (принципам реализации, предположениям, структурам данных и т.п.), что определяет ее концептуальную целостность и формируется в процессе ее разработки. При восходящей разработке эта глобальная информация для модулей нижних уровней еще не ясна в полном объеме, поэтому очень часто приходится их перепрограммировать.
  • 3. при восходящем тестировании для каждого модуля (кроме головного) приходится создавать ведущую программу (модуль), которая должна подготовить для тестируемого модуля необходимое состояние информационной среды и произвести требуемое обращение к нему. Это приводит к большому объему "отладочного" программирования и в то же время не дает никакой гарантии, что тестирование модулей производилось именно в тех условиях, в которых они будут выполняться в рабочей программе.

Метод нисходящей разработки.

Сначала строится модульная структура программы в виде дерева. Затем поочередно программируются модули программы, начиная с модуля самого верхнего уровня (головного), переходя к программированию какого-либо другого модуля только в том случае, если уже запрограммирован модуль, который к нему обращается. После того, как все модули программы запрограммированы, производится их поочередное тестирование и отладка в таком же (нисходящем) порядке.

Положительные стороны

  • 1. При таком порядке разработки программы вся необходимая глобальная информация формируется своевременно, т.е. ликвидируется весьма неприятный источник просчетов при программировании модулей.
  • 2. Существенно облегчается и тестирование модулей, производимое при нисходящем тестировании программы. Первым тестируется головной модуль программы, который представляет всю тестируемую программу и поэтому тестируется при "естественном" состоянии информационной среды, при котором начинает выполняться эта программа. При этом все модули, к которым может обращаться головной, заменяются на их имитаторы. Имитатор модуля - простой программный фрагмент, сигнализирующий, о самом факте обращения к имитируемому модулю с необходимой для правильной работы программы обработкой значений его входных параметров и с выдачей, если это необходимо, заранее запасенного подходящего результата. После завершения тестирования и отладки головного и любого последующего модуля производится переход к тестированию одного из модулей, которые в данный момент представлены имитаторами, если таковые имеются. Для этого имитатор выбранного для тестирования модуля заменяется на сам этот модуль и добавляются имитаторы тех модулей, к которым может обращаться выбранный для тестирования модуль. При этом каждый такой модуль будет тестироваться при "естественных" состояниях информационной среды, возникающих к моменту обращения к этому модулю при выполнении тестируемой программы. Таким образом, большой объем "отладочного" программирования заменяется программированием достаточно простых имитаторов используемых в программе модулей. Кроме того, имитаторы удобно использовать для подыгрывания процессу подбора тестов путем задания нужных результатов, выдаваемых имитаторами.

Рассмотренные методы называются классическими. В них модульная древовидная структура программы должна разрабатываться до начала программирования модулей. Однако такой подход вызывает ряд возражений: маловероятно, чтобы до программирования модулей можно было разработать структуру программы достаточно точно и содержательно.

При конструктивном и архитектурном подходах к разработке программ модульная структура формируется в процессе программирования модулей.

Конструктивный подход (Модификация нисходящей разработки)

Модульная древовидная структура программы формируется в процессе программирования модуля. Сначала программируется головной модуль, исходя из спецификации программы в целом, причем спецификация программы является одновременно и спецификацией ее головного модуля, так как последний полностью берет на себя ответственность за выполнение функций программы. В процессе программирования головного модуля, в случае, если эта программа достаточно большая, выделяются внутренние функции, в терминах которых программируется головной модуль. Это означает, что для каждой выделяемой функции создается спецификация реализующего ее фрагмента программы, который в дальнейшем может быть представлен некоторым поддеревом модулей. Важно заметить, что здесь также ответственность за выполнение выделенной функции берет головной (может быть, и единственный) модуль этого поддерева, так что спецификация выделенной функции является одновременно и спецификацией головного модуля этого поддерева. В головном модуле программы для обращения к выделенной функции строится обращение к головному модулю указанного поддерева в соответствии с созданной его спецификацией. Таким образом, на первом шаге разработки программы (при программировании ее головного модуля) формируется верхняя начальная часть дерева, например, такая, которая показана на рис. 7.1.

Рис. 7.1

Аналогичные действия производятся при программировании любого другого модуля, который выбирается из текущего состояния дерева программы из числа специфицированных, но пока еще не запрограммированных модулей. В результате этого производится очередное деформирование дерева программы, например, такое, которое показано на рис. 7.2.

Архитектурный подход (модификация восходящей разработки)

Модульная структура программы формируется в процессе программирования модуля. Но при этом ставится другая цель разработки: повышение уровня используемого языка программирования, а не разработка конкретной программы. Это означает, что для заданной предметной области выделяются типичные функции, каждая из которых может использоваться при решении разных задач в этой области, и специфицируются, а затем и программируются отдельные программные модули, выполняющие эти функции. Так как процесс выделения таких функций связан с накоплением и обобщением опыта решения задач в заданной предметной области, то обычно сначала выделяются и реализуются отдельными модулями более простые функции, а затем постепенно появляются модули, использующие ранее выделенные функции. Такой набор модулей создается в расчете на то, что при разработке той или иной программы заданной предметной области в рамках конструктивного подхода могут оказаться приемлемыми некоторые из этих модулей.

Это позволяет сократить трудозатраты на разработку конкретной программы путем подключения, к ней заранее заготовленных и проверенных на практике модульных структур нижнего уровня. Так как такие структуры могут многократно использоваться в разных конкретных программах, то архитектурный подход может рассматриваться как путь борьбы с дублированием в программировании. В связи с этим программные модули, создаваемые в рамках архитектурного подхода, обычно параметризуются для того, чтобы усилить применимость таких модулей путем настройки их на параметры.

Рис. 7.2

Метод нисходящей реализации. Каждый запрограммированный модуль начинают сразу же тестировать до перехода к программированию другого модуля.

61.1K

Сайты тоже имеют свой скелет. Но о его особенностях спрашивать врачей бесполезно. Да и ветеринары тоже не в курсе строения сайта. Об этом ведомо лишь верстальщикам. Именно от них зависит строение скелета будущего ресурса. А главным способом создания костей его скелета является блочная верстка.

Верстка сайта – ремесло для посвященных

Есть в верстке сайта что-то таинственное. Но это до тех пор, пока не познакомишься с этим ремеслом поближе. Начинаем наше посвящение:


Следующим этапом разработки сайта после создания его макета является верстка. Задача верстальщика перенести с помощью html кода и таблиц css скелет будущего сайта в виртуальный мир. Проще говоря, перенести размеры и пропорции ресурса в форму, понятную для браузера.

В процессе верстки кодом html происходит разбивка «скелета » сайта на части. А с помощью css (каскадных таблиц стилей ) задаются размеры его «костей », цвет и расположение.

Различают несколько видов верстки:

I. Табличная – ранее была основным способом верстки. В табличной верстке для задания структуры сайта используется тег

и его дочерние теги. Верстка с помощью таблиц позволяет наиболее пропорционально расположить все элементы дизайна относительно друг друга. Но в тоже время такой код получается слишком объемным:


Также к основным недостаткам табличного кода относится его долгая загрузка и плохая индексация содержимого поисковыми системами.

Содержимое страницы, сверстанной на основе таблиц, не будет отображено до тех пор, пока не загрузятся все данные. Блочная верстка позволяет отображать каждый загруженный элемент отдельно.

Плохая индексация табличных страниц объясняется большими промежутками между блоками текста, расположенного в разных ячейках таблицы.

Теперь табличная верста редко используется в качестве основного метода создания сайтов. Сейчас ее применяют лишь для структурирования табличных данных и расположения графических изображений.

II. Блочная – в данный момент является основным способом верстки. В отличие от табличной блочная верстка обладает рядом преимуществ:

  • Отделение стиля элементов от кода html ;
  • Возможность наложения одного слоя на другой – такая возможность во многом облегчает позиционирование элементов.
  • Лучшая индексация поисковиками;
  • Высокая скорость загрузки страницы, состоящей от взаимно независимых элементов;
  • Легкость создания визуальных эффектов (выпадающих меню, списков, всплывающих подсказок ).

Основным недостатком блочной верстки является некая «двусмысленность » понимания ее кода различными браузерами. Поэтому часто html страницы приходится «доводить » путем использования специальных хаков.

С появлением блочной верстки родилось такое понятие, как «кроссбраузерность». Из-за различия отображения одного и того же элемента в разных браузерах верстальщикам приходится вставлять в основной html целые куски кода (хаки).

Действие хака является узкоспециализированным и решает проблему некорректного отображения лишь в одном браузере.

Основным элементом, применяемым в блочной верстке, является тег

. Участок кода, отделенный этим тегом, называется слоем. Все стилевые решения вынесены за границы кода html в каскадные таблицы стилей. Доступ к ним осуществляется через идентификаторы или классы css :

Как происходит блочная верстка?

Перед началом верстки готовый psd макет сайта в графическом редакторе разрезают на блоки (слои ). В отдельную папку помещают вырезанные фоновые картинки, которые будут прикрепляться отдельно к каждому слою:


Для примера возьмем вот такой макет сайта, созданный в Photoshop . Сначала в текстовом редакторе с помощью div задаем структуру будущего ресурса и присваиваем каждому слою свой селектор id . Получается такая структура:

Затем к готовой структуре сайта на html строкой прикрепляем файл css . После чего добавляем в него стилевое описание каждого слоя, позиционирование относительно других элементов и его размеры.

Более подробно ознакомиться со всеми свойствами css можно из технической документации к языку.

Полный код примера index.html :

Пример блочной верстки

Контент

Содержимое файла style.css :

body { background: #f3f2f3; color: #000000; font-family: Trebuchet MS, Arial, Times New Roman; font-size: 12px; } #container { background:#99CC99; margin: 30px auto; width: 900px; height: 600px; } #header { background: #66CCCC; height: 100px; width: 900px; } #navigation { background: #FF9999; width: 900px; height: 20px; } #menu { background: #99CC99; float: left; width: 200px; height: 400px; } #content { background: #d2d0d2; float: right; width: 700px; height: 400px; } #clear { clear:both; } #footer { background: #0066FF; height: 80px; width: 900px; }

Вот так наш пример блочной верстки сайта выглядит в окне браузера.

компилятор должен инициировать сообщение об ошибке компиляции. В зависимости от того, указывает ли идентификатор на переменную или на константу компилятор также должен предпринимать различные действия.

Имя в программе может быть простым или составным. К простым именам относятся имена переменных, имена подпрограмм, имена пользовательских типов данных. Составное имя ссылается на элемент некоторой структуры и записывается как простое имя и следующие за ним операции квалификации или индексации имени. Например, выражение array1 ссылается на третий элемент массива, а выражение record1.field2 ссылается на значение поля field2 структуры record1 .

Для управления данными конкретные идентификаторы подпрограммы должны быть сопоставлены конкретным объектам данных. Такое сопоставление иногда называется ассоциацией. В момент создания записи активации устанавливается множество ассоциаций, сопоставляющих идентификаторы с текущими объектами данных. Такое множество ассоциаций определяет среду ссылок подпрограммы.

Среда ссылок подпрограммы включает среду глобальных ссылок, среду локальных ссылок, среду нелокальных ссылок и среду предопределенных ссылок.

Среда локальных ссылок образуется локальными переменными, формальными параметрами, а также подпрограммами, определенными внутри текущей подпрограммы.

Среда глобальных ссылок формируется ассоциациями, которые созданы при активации главной программы. Среда нелокальных ссылок содержит как среду глобальных ссылок, так и множество ассоциаций, сформированных для доступных далее в программе, но еще не созданных переменных.

Область видимости ассоциации в подпрограмме определяется включением этой ассоциации в среду ссылок подпрограммы. При этом если имело место переопределение глобального идентификатора локальным идентификатором, то ассоциация для глобального идентификатора исключается из среды глобальных ссылок подпрограммы.

Динамическая область видимости каждой ассоциации определяется совокупностью записей активации подпрограмм, включающих данную ассоциацию в среду ссылок подпрограммы.

На один и тот же объект данных можно ссылаться посредством различных имен - например, если в подпрограмме доступен идентификатор глобальной переменной и эта же переменная передается по ссылке как формальный параметр подпрограммы. Различные идентификаторы, существующие в среде ссылок для ассоциации с одним и тем же объектом данных, иногда называются псевдонимами.

Использование псевдонимов может приводить к различным ошибочным ситуациям. К тому же, наличие в подпрограмме псевдонимов осложняет процесс оптимизации кода, выполняемый компилятором. Например, если при выполнении последовательности двух операторов

int1=5*x; int2=8*y;

Значение переменной int1 нигде в программе не используется, то при оптимизации программы первый оператор может быть упразднен. Но если переменная int1 является псевдонимом переменной y , то такая оптимизация приведет к ошибке вычисления, и, следовательно, потребуются дополнительные проверки.

Под статической областью видимости понимается фрагмент кода программы, в котором идентификатор ссылается на конкретный объект .

Статическая область видимости определяет объект , на который ссылается идентификатор в коде программы, а динамическая область видимости формируется ассоциациями, созданными во время выполнения программы.

Блочно-структурированные языки программирования

В блочно- структурированных языках программирования программа записывается как множество иерархически вложенных блоков определенной структуры.

Блочно- структурированные языки программирования можно подразделить на строго блочно- структурированные языки и просто блочно- структурированные языки .

В строго блочно- структурированных языках в начале каждого блока располагается область объявлений, а за ней следует фрагмент кода. Иначе говоря, в строго блочно- структурированных языках программирования не допускается объявление переменных в любом месте фрагмента кода.

К строго блочно- структурированным языкам программирования относятся языки ALGOL 60, Pascal , PL/I .

Каждый блок в блочно-структурированном языке программирования вводит новую среду локальных ссылок.

Следующий пример иллюстрирует блочную структуру программы на языке Pascal .

program Project1; procedure P1(); procedure P2(); {Вложенная процедура} var i:Integer; begin end; begin {Код процедуры P1} end; begin {Код главной программы Project1} end.

В языке Object Pascal по умолчанию приложения создаются как набор модулей, подключаемых ключевым словом uses . Следующий пример иллюстрирует блочную структуру программы на языке Object Pascal , представленную в виде одного модуля.

Program Project2; {Начало программы} uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; {$R *.res} {$R *.dfm} {Имя DFM-файла должно совпадать с именем модуля (блока). } {Для получения единого модуля на языке Object Pascal при автоматическом создании приложения в среде Delphi файл Unit1.dfm следует переименовать в Project2.dfm, а код модуля Unit1.pas перенести в модуль Project2.pas} type {Объявление нового типа окна формы TForm1 } TForm1 = class(TForm) Button1: TButton; Button2: TButton; ListBox1: TListBox; Edit1: TEdit; procedure Button1Click(Sender: TObject); procedure Button2Click(Sender: TObject); procedure ListBox1Click(Sender: TObject); private { Private declarations } public { Public declarations } end; var {Начало области объявлений } Form1: TForm1; i: Integer; procedure TForm1.Button1Click(Sender: TObject); begin Edit1.Text:="Button1"; end; procedure TForm1.Button2Click(Sender: TObject); var i:Integer; procedure P1(); {Вложенная процедура} var i:Integer; begin i:=5; Edit1.Text:= Edit1.Text+" i= " + IntToStr(i); end; begin Edit1.Text:="Button2"; i:=0; P1 (); end; procedure TForm1.ListBox1Click(Sender: TObject); begin Edit1.Text:="ListBox1"; end; begin {Начало выполнения программы} Application.Initialize; Application.CreateForm(TForm1, Form1); Application.Run; end. Пример 5.1. Блочная структура программы на языке Object Pascal

Раньше на просторах Интернета был широко распространён табличный тип вёрстки, которому посвящена . Однако со временем этот подход к созданию структуры сайта устарел, и на смену ему пришла блочная вёрстка.

Отличия блочной вёрстки от табличной

Если табличная вёрстка подразумевает, что содержимое страницы находятся внутри тега

, то концепция блочной вёрстки основана на активном использовании универсальных тегов
, внутрь которых помещается содержимое, включая другие теги.

Блочная вёрстка лишена недостатков табличной - поисковыми системами она индексируется лучше, её код не такой развесистый, да и блоки

, которые так любят называть «слоями», изначально задумывались универсальными, то есть «для всего», тогда как
- это таблица, которую нужно использовать для отображения табличных данных и не более того.

Единственный ощутимый минус блочной вёрстки - сделанные на ней сайты могут по-разному отображаться в обозревателях. Чтобы этого избежать, нужно делать вёрстку «кроссбраузерной», то есть одинаково отображаемой любым обозревателем.

Суть блочной вёрстки

В графическом редакторе создаётся макет сайта: размечается, где какая область страницы (шапка, низ, боковая панель, основной контент) будет находиться и сколько места занимать, готовятся картинки, фоны.

Каждая часть страницы помещается в свой блок

: верх сайта - в первый, меню - во второй, контент - в третий и т. д. Каждый блок наполняется содержимым средствами HTML, а также позиционируется и оформляется с помощью CSS-разметки.

Конечный HTML-документ представляет собой набор блоков

с контентом внутри. Оформление зачастую находится в отдельном CSS-файле, подключенном к странице тегом , или как минимум в контейнере